[111] L. Besnard et al., “Clarification of vaccines: An overview of filter based technology

trends and best practices,” Biotechnol. Adv., vol. 34, no. 1, pp. 1–13, Jan. 2016, doi:

10.1016/j.biotechadv.2015.11.005

[112] M. Westoby, J. Chrostowski, P. De Vilmorin, J. P. Smelko, J. K. Romero, and N.

Carolina, “Effects of solution environment on Mammalian cell fermentation broth

properties: Enhanced impurity removal and clarification performance,” vol. 108, no.

1, pp. 50–58, 2011, doi: 10.1002/bit.22923

[113] S. B. Carvalho et al., “Efficient filtration strategies for the clarification of influenza

virus-like particles derived from insect cells,” Sep. Purif. Technol., vol. 218,

pp. 81–88, Jul. 2019, doi: 10.1016/j.seppur.2019.02.040

[114] M. G. Moleirinho, R. J. S. Silva, P. M. Alves, M. J. T. Carrondo, and C. Peixoto,

“Current challenges in biotherapeutic particles manufacturing,” Expert Opin. Biol.

Ther., vol. 20, no. 5, pp. 451–465, May 2020, doi: 10.1080/14712598.2020.1693541

[115] P. Pereira Aguilar, I. GonzálezDomínguez, T. A. Schneider, F. Gòdia, L. Cervera,

and A. Jungbauer, “Atline multiangle light scattering detector for faster process

development in enveloped viruslike particle purification,” J. Sep. Sci., vol. 42,

pp. 2640–2648, Jun. 2019, doi: 10.1002/jssc.201900441

[116] P. Pereira Aguilar et al., “Polymer-grafted chromatography media for the pur-

ification of enveloped virus-like particles, exemplified with HIV-1 gag VLP,”

Vaccine, vol. 37, no. 47, pp. 7070–7080, 2019, doi: 10.1016/j.vaccine.2019.07.001

[117] T. P. Pato et al., “Development of a membrane adsorber based capture step for the

purification of yellow fever virus,” Vaccine, vol. 32, no. 24, pp. 2789–2793, May

2014, doi: 10.1016/j.vaccine.2014.02.036

[118] P. Steppert et al., “Purification of HIV-1 gag virus-like particles and separation of

other extracellular particles,” J. Chromatogr. A, vol. 1455, pp. 93–101, 2016, doi:

10.1016/j.chroma.2016.05.053

[119] P. Steppert et al., “Separation of HIV-1 gag virus-like particles from vesicular

particles impurities by hydroxyl-functionalized monoliths,” J. Sep. Sci., vol. 40,

no. 4, pp. 979–990, 2017, doi: 10.1002/jssc.201600765

[120] C. S. M. Fernandes et al., “Retroviral particles are effectively purified on an affinity

matrix containing peptides selected by phage-display,” Biotechnol. J., vol. 11,

no. 12, pp. 1513–1524, 2016, doi: 10.1002/biot.201600025

[121] C. Ladd Effio, L. Wenger, O. Ötes, S. A. Oelmeier, R. Kneusel, and J. Hubbuch,

“Downstream processing of virus-like particles: Single-stage and multi-stage aqu-

eous two-phase extraction,” J. Chromatogr. A, vol. 1383, pp. 35–46, Feb. 2015, doi:

10.1016/j.chroma.2015.01.007

[122] M. F. Gencoglu and C. L. Heldt, “Enveloped virus flocculation and removal in

osmolyte solutions,” J. Biotechnol., vol. 206, pp. 8–11, Jul. 2015, doi: 10.1016/

j.jbiotec.2015.03.030

[123] S. B. Carvalho et al., “Membranebased approach for the downstream processing of

influenza viruslike particles,” Biotechnol. J., vol. 14, no. 1800570, pp. 1–12, Aug.

2019, doi: 10.1002/biot.201800570

[124] A. Venereo-Sanchez et al., “Process intensification for high yield production of in-

fluenza H1N1 Gag virus-like particles using an inducible HEK-293 stable cell line,”

Vaccine, vol. 35, no. 33, pp. 4220–4228, 2017, doi: 10.1016/j.vaccine.2017.06.024

[125] M. G. Moleirinho et al., “Baculovirus affinity removal in viral-based bioprocesses,”

Sep. Purif. Technol., vol. 241, no. 116693, pp. 1–9, Jun. 2020, doi: 10.1016/

j.seppur.2020.116693

[126] K. Reiter, P. P. Aguilar, D. Grammelhofer, J. Joseph, P. Steppert, and A. Jungbauer,

“Separation of influenza virus-like particles from baculovirus by polymer grafted

anion-exchanger,” J. Sep. Sci., 43, 12, pp. 1–21, Mar. 2020, doi: 10.1002/jssc.201

901215

Recombinant vaccines: Gag-based VLPs

267